Notes

TABLE]	Ĺ
---------	---

OXIDATION OF POLYHYDRIC ALCOHOLS WITH SODIUM PERBORATE

Alcohol suitate volume Strength perforate reaction Yield of oszaone, (unco Alcohol in g. in g. in cc. in N in g. in min. g. $\%$ rected	x) Jackson
Ethylene glycol 1.55 1.3 30 4 4.293 60 0.588 9.88 168	169.5
Glycerol 2.5 0.25 35 8 4.668 15 0.96 13.25 131	130-131
Erythritol 2.5 1.25 25 8 3.508 30 1.53 25.0 166	167
Mannitol 5.0 1.25 35 3 4.720 360 1.55 20.9 198	197-198
Dulcitol 2.0 1.0 15 3 1.89 480 205	206
Sorbitol 2.0 0.9 15 3 1.89 480 204	203

3 mols. g. 0.54 0.76

TABLE II

YIELDS OF OSAZONES

Alcohol	Hydr peros Fenton and Jack- son g.	ogen 1 iide, Pres- ent inves- tiga- tion g.	Hydroge peroxid and boric acid (1 mol), g.	en e Sodium per- borate alone, g.	E 1 mol. g.	oric acid 2 mols. g.
Ethylene						
glycol	0.70	0.55	0.50	0.588	0.55	0.54
Glycerol	1.55	1.00	0.85	0.960	0.81	0.78

1.75 1.55 1.30 1.530

oxidation product with sodium perborate is a little less than with hydrogen peroxide except with ethylene glycol but there is a distinct advantage in the use of sodium perborate which can be added conveniently in any controlled quantities to a reaction mixture. This investigation has also shown that the presence of boric acid has a retarding effect on the oxidation of a polyhydric alcohol both with sodium perborate as well as with hydrogen peroxide.

3.12 2.15 1.84 1.550 1.27 1.08 0.20

DEPARTMENT OF CHEMISTRY THE ROYAL INSTITUTE OF SCIENCE BOMBAY, INDIA

A Correction: Absorption Spectra of Azlactones¹

By F. W. Schueler and Calvin Hanna Received July 7, 1952

Recently we have had our attention called to errors in some of the absorption maxima values we reported for certain azlactones.²

The corrected values for the azlactones reported in the above reference are listed in Table I. As will be seen upon comparison of these values with the values reported in the above-mentioned reference, the average errors for the first maxima and second maxima were 35 and 74 m μ , respectively. Such errors are clearly of such a constancy that they suggested a systematic error in the standardization of the instrument during the period through which these materials were studied.

It has been the practice in many laboratories to check the standardization of the Beckman spectrophotometer only twice or three times a year. Following our experience with this instrument, however, we feel that the instrument should be checked before each use with a compound of known

(1) This work was aided by a grant from the U. S. Public Health Service.

(2) F. W. Schueler and S. C. Wang, This JOURNAL, 72, 2220 (1950).

spectra before the determination of the spectra of compounds never before evaluated in these regards.

		TABI	ĿΕΙ		
	ABSORPT	ION SPECTE	ra of Az	LACTONES	
No.	$\max_{n\mu} 1$	$\max_{\substack{\mathfrak{m}\mu}} 2$	No.	Max. 1 mµ	Max. 2 mµ
1	259	377	15	265	386
2	268	387	16	244	365
3	271	376	17	257	370
4	261	365	18	232	328
5	259	360	19	264	369
6	259	376	20	265	401
7	264	393	21	264	396
8	257	373	22	264	394
9	260	362	23	259	383
10		359	24	260	361
11		360	25	225	286
12		290	26	245	482
13	259	372	27	240	475
14	247	366	28	240	425

As a result of this correction it will be seen that the conjugated system

better accounts for the spectra of the azlactones than the system

originally indicated.² Moreover, a comparison of these corrected results on the azlactones, together with results obtained using the analogous crotonolactones,³ indicates that chromophoric system operates in both. Thus, in the case of the crotonolactones, the conjugated system

is analogous to the system (2) indicated above for the azlactones.

(3) F. W. Schueler and Calvin Hanna, ibid., 73, 3528 (1951).

DEPARTMENT OF PHARMACOLOGY College of Medicine Iowa City, Iowa

Indophenols of 8-Quinolinols

By J. P. Phillips, J. F. Emery and Quintus Fernando Received June 30, 1952

The indophenol formed by 8-quinolinol when treated with hydroxylamine in an alkaline oxidizing

Erythritol Mannitol